In this talk I’ll present an overview of the challenges and opportunities for applying data mining and machine learning for tasks in personalized health, including the role of semantics. In particular, I’ll focus on the task of healthy recipe recommendation via the use of knowledge graphs, as well as generating summaries from personal health data, highlighting our work within the RPI-IBM Health Empowerment by Analytics, Learning, and Semantics (HEALS) project.

Mohammed J. Zaki is a Professor and Department Head of Computer Science at RPI. He received his Ph.D. degree in computer science from the University of Rochester in 1998. His research interests focus novel data mining and machine learning techniques, particularly for learning from graph structured and textual data, with applications in bioinformatics, personal health and financial analytics. He has around 300 publications (and 6 patents), including the Data Mining and Machine Learning textbook (2nd Edition, Cambridge University Press, 2020). He founded the BIOKDD Workshop, and recently served as PC chair for CIKM’22. He currently serves on the Board of Directors for ACM SIGKDD. He was a recipient of the NSF and DOE Career Awards. He is a Fellow of the IEEE, a Fellow of the ACM, and a Fellow of the AAAS.